
International Journal of Theoretical Physics, Vol. 31, No. 6, 1992 

SU(2)q in a Hilbert Space of Analytic Functions 
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The algebra SU(2)q is realized in a Hilbert space H2q of analytic functions; the 
starting point is the differential realization of operators that satisfy q-algebra in 
a Hilbert space Hq. The Weyl realization of SU(2)q is constructed exhibiting 
the reproducing kernel and the principal vectors; the noncommutativity of the 
matrix elements of a 2 x 2 linear representation of SU(2)q is obtained as con- 
sistency conditions for coupling j l = j 2 = l / 2  to j = 0 ,  1; the derivation of 
Clebsch-Gordan coefficients is sketched and the q-generalization of the rotation 
matrices is included. The unitary correspondence of Hq with a Hilbert space of 
complex functions of a real variable is also studied. The study presented in this 
paper follows Bargmann's formalism for the rotation group as closely as possible. 

1. INTRODUCTION 

1.1. The purpose of the present paper is to present a description of 
SU(2)q realized in a Hilbert space, denoted H~, of analytic functions 
following (methodologically) as closely as possible Bargmann's scheme for 
the rotation group (Bargmann, 1962). The basic Hilbert space considered 
in the present work is a space, denoted Hq, of analytic functions of one 
complex variable on which a differential realization of the so-called q- 
algebra plays a central role; the differential realization of the q-algebra is 
the starting point for a Weyl representation of SU(2)q in the sense that 
H2q = Hq | Hq. The Hilbert space Hq is the same one proposed by Arik and 
Coon (1976) in connection with the construction of generalized coherent 
states. In this paper I add to the known mathematical structure of Hq explicit 
expressions for the reproducing kernel and the principal vectors. From the 
algebraic point of view the q-algebra is closely related to the one studied 
by Biedenharn (1989) and Macfarlane (1989) but is a wider scheme because 
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in the last two reference q---0, while the most general case allows q -> -  1 
(Kuryshkin, 1980). In the present paper the parameter q is restricted 
to 0 < q < l .  

1.2. The construction of the Hilbert space H i proceeds as follows: it 
is spanned by analytic functions in two complex variables with the inner 
product proposed by Arik and Coon (1976); as a by-product the Hilbert 
space is separated in orthogonal subspaces generated by homogeneous 
polynomials in the two complex variables. The bases of each of these 
invariant subspaces support the irreducible representations of SU(2)q. The 
mathematical structure of the Hilbert space thus constructed proves to be 
similar to Bargmann's space for the rotation group: a reproducing kernel 
can be exhibited in an explicit way which reduces to the known result in 
the limit q --> 1; in addition, the characteristic vectors are explicitly construc- 
ted. The difference from Bargmann's space is that the functions belonging 
to H i are analytic in a finite region of C z, where C represents the field of 
complex numbers. The next step [following Bargmann (1961)] is to relate 
Hq to a Hilbert space F of complex functions of a real variable (the 
equivalent of the Hilbert space of ordinary quantum mechanics). The 
q-algebra is realized in F if the inner product is not Jf*(x)g(x) dx but 

f(a/dx)g(x)lx=O 

The connection is then established with this Hilbert space F. It turns out 
that the transformation from Hq to F is unitary, as in Bargmann's study of 
the integral transform connecting the two Hilbert spaces considered by him 
(Bargmann, 1962); there is a small difference, however, which is that the 
unitarity is proved in the present case in a much easier way. It is not 
necessary to prove that the transform is isometric and then invertible to 
obtain unitarity; in the present case it is shown explicitly that a function 
in one space has one and only one image in the other, by arguing simply 
that both of them are characterized by the same set of parameters. The 
relation can be extended in an obvious way to connect H i with F| for 
this reason this is not presented in this paper. 

1.3. Next, the direct product of representations and the Clebsch 
expansion are studied. As compared with the rotation group, this study has 
a serious drawback: the general characteristic of the matrices of a representa- 
tion of SU(2)q is unknown [in SU(2) they are unitary] and therefore they 
cannot be used to define the way in which an element of SU(2)q changes 
an arbitrary analytic function. This was a crucial step in the study of the 
rotation group, which made it possible to obtain the matrix elements of all 
irreducible representations. Once they are known, the Clebsch-Gordan 
coefficients are easily computed. There are a number of ways to overcome 
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this difficulty: one is to use invariant functions under the operators that 
satisfy SU(2)q  and to expand these functions to compute the Clebsch- 
Gordan coefficients; another is the method of highest weight (used in this 
paper) to obtain the coefficients. Of course these coefficients have been 
computed in a number of papers and some Of their properties studied in 
detail (Ruegg, 1990; Nomura, 1990a, b; Groza et al., 1990). For this reason 
the development presented here goes up to the point where it makes contact 
with the current derivations. Subsequent calculations are not presented. 
Once the Clebsch-Gordan coefficients for SU(2)q are known, the noncom- 
mutativity of the matrix elements of the representation of SU(2)q is obtained. 

1.4. As far as the mathematical apparatus is concerned, the so-called 
q-calculus (Jackson, 1951) and the comultiplication are essential ingredients 
for the computation of the tensor product of two representations. The 
q-calculus has as an important consequence the fact that the Leibniz rule 
has to be carefully applied. Finally, the result of all this exposition is that 
the study of SU(2)q is done in a unified way. No mention is made about 
the relations of SU(2)q to physical situations; its present study is tackled 
from the purely mathematical point of view. 

1.5. Notation: Di = D / D z i  and Oi =O/Ozi. In Section 3, the Clebsch- 
~ j  1j2 Gordan coefficients (CGC) "~mlm2,~ and the q-matrices r~O) q~mm' are written 

C(ml ,  m2;j)  and D ( m ,  m ' ; j ) ,  respectively; it is assumed that j l  and 
j2 are fixed. In the case m = + l / 2 ,  C ( 1 / 2 , - 1 / 2 ; j ) = C ( + - ; j )  and 
D(1/2, - 1 / 2 ; j )  = D ( + - ; j ) ,  where j = 0, 1. 

2. HILBERT SPACE FOR q-ALGEBRA (Hq) 

Consider two operators A and A t, Hermitian conjugates of one another, 
that satisfy 

A A  t - qAt  A = I (2.1) 

where q is a real parameter in the range q-> -1. This is a family of algebras 
(one for each value of q and called q-algebras); they were studied by 
Kuryshkin (1980), who computed the matrix elements of A and A t in a 
basis in which the operator B - A t A  is diagonal. Before Kuryshkin's paper 
a study of (2.1) restricted to the range 0<  q < 1 was reported by Arik and 
Coon (1976); their main purpose was to generalize the coherent states and 
realize the algebraic scheme in a Hilbert space of analytic functions. Further 
study on q-algebras is presented in Codriansky (1991), where the relation 
to para-Bose and para-Fermi algebras is clarified, a generalized Penney's 
theorem (Penney, 1965) is presented and a family of Hamiltonians exhibited. 
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2,1. Summary of Arik and Coon's (1976) Results 

The parameter q is restricted to 0 < q < 1; A and A* are realized as 
differential operators acting on analytic functions f (z)  of a complex variable 
z as follows: 

af(z) = Df(z)/Dz =- {f(z) -f(qz)}/(1 - q)z; Aff(z) = zf(z) (2.2) 

The "basic derivation" D/Dz was introduced by Jackson (1951) as 
the inverse of the "basic integration" defined as follows (x is a real variable): 

F(x) Dx-~ ( 1 - q ) b  Y. qIF(q~b) (2.3) 
1=0 

In terms of this basic integration the inner product in the space of 
analytic functions f (z)  and g(z) of a complex variable z is defined as 

( f  g)=--- ~r-a I DZzf*(z)g(z)/expq(qlz[2) (2.4) 

where z = Izl e i6 and f*  denotes the complex conjugate function 

D2z F(z, z*) = (1/2) D(lzl 2) d4~ F(z, z*) (2.5) 
, /0  

The q-exponential, expq(z), is defined as 

o o  

expq(z)= Y~ z"/[n]! (2.6) 
n = O  

where 

[n]=(1-q") / (1-q) ,  [oo] = 1 / ( 1 -  q); 

[ n ] !=  [ 1 ] . . . . . [ n ] ,  [0]!= 1 
(2.7) 

u,.(z)=z'l[n]! (2.8) 

are orthonormal and therefore form a basis of the space of functions. The 
space so constructed is a Hilbert space denoted Hq. The summary is ended. 

(n a nonnegative integer) whose series expansion is seen to be convergent 
for ]z[2< [oo]. This is the reason for the upper limit in (2.5). The space on 
which A a n d  A* act is the set of analytic functions f ( z )  with convergent 
series expansions in the region ]zlZ< [oo]. 

With the scalar product (2.4) the functions 
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Remark 2.1. In what follows I give a proof  of  the orthonormality of  
the functions urn(z) which is simpler than the one presented by Arik and 
Coon (1976). Compute the inner product  (z m, zn), 

(zm' Zn) = Ir-1 I DEz z*mz'/expq(qtzl2) 

= ~,~, Dlz] 2 [zl2m/expq(qlzl 2) - 8retire(q) (2.9) 
J O  

now define (replace lzl by u) 

Io(s) = Du/expq(su) = - s  -1 (2.10) 
J 0  

Then it follows that 

D~Io(s  ) = ( - 1 ) " q  m(m-l~/2 Du u~/expq(sqmu) (2.11) 
d O  

so that 

(-1)"q-mr D'~ lo( s)ls=q . . . . .  Ira(q) (2.12) 

Now, noting that I - n ]  = -q-n[n], it follows from (2.12) that lm(q) = [m]!. 

Remark 2.2. The space of  functions so constructed is in fact a Hilbert 
-v;~ a'z n is considered as being rep, space because if the function f ( z ) -  ,-,,=o 

resented by the set of coefficients {a,, n = 1, 2 , . . . } ,  then all sets that define 
convergent series expansions are included in the space; moreover, any set 
can be considered as the limit of  a sequence of  sets with a finite number 
of  nonvanishing coefficients and therefore all limiting points are included. 
The space is complete and therefore a Hilbert space. 

Remark 2.3. The inner product  (2.4) can be derived in the same way 
as Bargmann (1961) obtained the inner product  for the Hilbert space of 
entire functions that was subsequently used in the study of  the rotation 
group. The main requirement is that the operators A and A* be Hermitian 
conjugates under  the inner product. Considering the differential realization 
(2.2), this requirement amounts to (zf, g ) =  (f, Dg/Dz); at this point the 
inner product  is defined as (f, g)= K S D2zp(z)f*(z)g(z),  where p(z) is 
the kernel of  the product  and K is a constant. The equation that determines 
p(z) is Dp(z/q) /Dz =-z*p(z) ,  which, after we write p(z)= 1/R(qlzl2), 
becomes O(1/R(lzl2))/Dz = -z*/R(qtz]2). The solution is (Jackson, 1951) 
R(Izl 2) -- expq(lz[2). In fact, f rom (2.7) 

oo 

1/expq(Z)= Y~ (-1)nq'~'-~)/2zn/[n]! (2.13) 
n = 0  



912 Codriansky 

and from (2.2) 

D(1 /expq( z ) ) /Dz=-  ~ (-1)nqn("-')/2(qz)"/[n]!=-l/expq(qz) (2.14) 
n=0 

Remark 2.4. Basic differential operators other than (2.2) have been 
defined: for the particular cases a = - f l  = 1/2 (Ganchev and Petkova, 1989; 
Ruegg, 1990; Biedenharn, 1989; Gray and Nelson, 1990), and a = - /3  = 1 
{Macfarlane (1989) defines only [ n], not the differential operator associated 
for this case; Sun and Fu (1990), Bracken et al. (1991). They are of the 
form (denoted generically by/5 ,  a, and fl real numbers) 

Df(z) - ( f (  q'~z) - f (  qt3z) )/ ( q'~ - qt3)z (2.15) 

Associated to each operator/5 is a particular "basic bracket" [the equivalent 
of (2.6)], n a nonnegative integer, 

(n)=--(q'~n-qa")/(q'~-q~), (0)!= 1, (n)t 
= ( 1 ) .  . . . .  �9 (n) (2.16) 

in terms of which a family of exponentials is defined, A a parameter (real 
or complex), as 

exp , (z )=  ~ qX"("-l)z~/(n)! (2.17) 
n=0 

each of which satisfies/5 exp,(z) = exp~(q2Xz). 
Now, compute D ( z f ( z ) ) -  h(q)zDf(z),  where h(q) is an indetermined 

function of q that should be fixed so that /5  satisfies an algebraic relation 
as close as possible to a q-algebra. The result is (d = d/dz)  

E)(zf(z)) - h(q)zDf(z) 

={f(q"z)(q ~ - h ( q ) ) - f ( q ~ z ) ( q  ~ - h ( q ) ) } / ( q ~ - q  ~) (2.18) 

No function h(q) allows recovering in the fight-hand side the operator / ) ;  
on the other hand, the function f ( z )  is recovered if h(q) = q~ and a = 0. 
This is exactly a q-algebra with q replaced by qa. If in (2.18) f(q~z) is 
replaced using (2.15), the result is 

D(zf(z)  ) - q~zDf(z) = f (  q'~z) = q~Za f ( z )  (2.19) 

which is independent of h(q); therefore the extra freedom associated with 
the introduction of h(q) is apparent. Now, (2.15), can be written as Df(z) = 
(q~--q~)-l(q~Za-~q#Zd)f(z), SO that ~zff),zd[_f(z)=O. Define then the 
new operators Df(z) =- (Dq-~Zd/2)f(z) and T f ( z ) -  (q-~Zd/2z)f(z). They 
satisfy the following commutation relation: 

( ~ . _  q~-,,/27"D)f(z) =f (z )  (2.20) 
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which is a q-algebra with q-> q#-a/2. As a result, all basic differentials 
defined in (2.15) satisfy a q-algebra whose parameter is determined by the 
particular values of a and/3. The case considered in equation (2.2) is the 
simplest in the sense that a q-algebra is obtained without redefinition of 
the operators. In any ease, all values of a and /3 such that a - f l / 2 =  1 
define the same algebra as (2.2). 

2.2. The Reproducing Kernel and the Principal Vectors in Hq 

The reproducing kernel (Aronszajn, 1950) is defined as a function 
K(t, z) of two complex variables (t, z), which for every z belongs to the 
Hilbert space Hq and for every function f E  Hq 

f (z)  = (K(t, z), f(t))t  (2.21) 

where the subscript in the scalar product indicates that it applies to functions 
of t (Aronszajn, 1950). Since the monomials (2.8) are orthonormal, it follows 
that 

K(t, z) = ~ t"z*m/[m]!=expq(tz*) (2.22) 
m=0 

is the reproducing kernel in Hq. 
The principal vector e~ is defined as follows (a a complex number): 

f ( a )  = (e~,f)  (2.23) 

Its explicit form as a function of a and z (a, z s C) is 

e~(z) = ~ ol*kzk/[k]! = expq(a*z) (2.24) 
k=0 

Expressions (2.22) and (2.24) reduce to Bargmann's result (Bargmann, 1961) 
when q-~ 1. The principal vectors belong to H*,  the dual of Hq. 

Remark 2.5. A construction of a Hilbert space similar to the one 
sketched in this section was reported by Bracken et ai. (1991). Their 
expression for the inner product is, however, different mainly because they 
define it with the q-exponential used in their paper as E ( - r  2) (their notation) 
in the numerator. In this way the behavior of the exponential for negative 
values of the argument governs the inner product; in the inner product I 
studied, positive values of the argument come into play. An important 
difference with the present approach is that Bracken et al. (1991) start by 
generalizing directly the known results for coherent states and then construct 
the underlying algebra. I start with the q-algebra and as a consequence all 
developments are simpler, in particular (and this is one of the main points) 
the derivation of the kernel of the inner product. 
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3. HILBERT SPACE FOR SU(2)q 

3.1. The Weyl Realization 

Consider the linear space spanned by the function [Ruegg (1990) and 
Sun and Fu (1990) considered these same functions] 

o~(z l ,  z2) = M ( j ,  m)z{+"z�89 - "  (3.1) 

where M ( s  m) = {[ j+  m]! [ j - m ] ! }  -1/2 and (zl, z2) are a pair of complex 
variables restricted by Iz, l=< [oo], i = 1, 2. Define the scalar product in this 
space by 

f f * ( z , ,  zz )g(z , ,  zz) 
( f  g) = 7r -2 Dz ,  P z  2 expq( qlz,[2) expq( qlz2[2) (3.2) 

Then, it is clear that the monomials (3.1) are orthonormal under (3.2). The 
linear space consists of functions that can be expanded in a Taylor series 
convergent in the region {(zl, z2), [zil:< [~],  i = 1, 2}. Completeness is 
proved in the usual way; therefore, the linear space with the scalar product 
(3.2) is a Hilbert space H~, which is the tensor product of two copies of 
Hq, Hq-Z H q |  It is in this space that the Weyl realization of SU(2)q 
will be exhibited. 

The differential operators J •  Jz, and C defined as 

J+ =q(1-c)/4ZlD2, J -  =q(1-c)/4z2D 1 (3.3a) 

Jz = (z101 - z202)/2, C = z101 + z2Oz (3.3b) 

yield, when acting on v~( z l ,  z2), 

( J + )v~ ( zl , z2) = q(l-2j)/4[j _ m ] M  ( jm )z~+,,,+l zJ2-,,-i 

= q(1-2j)/4{[j _ rn] [j + m + 1]} 1/2 

x VJm+I(Z,, Z2) (3.4a) 

( J - ) v ~ ( z l ,  z2) = q(1-2j)/4{[j + m] [j - m + 1]} 1/2 

x vdm_l(Zl, z2) (3.4b) 

( J z )v~(z l ,  z2) = mv~(z l ,  z2) (3.4c) 

Cry(z1 ,  zz) = 2jVJm(Zl, Z2) (3.4d) 

and from here ([[a, b]]_=-ab-ba)  

~J+, Jz]_v~(z l ,  z2) = e~(J+ )v~( z l ,  z2) (3.5a) 

[[J +, J - ] _ v ~  ( zl ,  z2) = ( qJZ _ q-J~) / ( q~/2_ q-l /z)  

x v~(z l ,  z2) (3.5b) 

[C, J + ] _ = 0 ,  l[C, Jz]]_=O (3.6) 
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Relations (3.5a) and (3.5b) are the SU(2)q commutation relations; (3.5b) 
is obtained when acting on v~(z~, z2), not generically (Biedenharn, 1989), 
while (3.5a) is generically obtained. C is a Casimir operator as follows 
from (3.6); it is the SU(2)q generalization of  the so-called Euler operator 
of  $U(2)  (Biedenharn and Louck, 1981). It follows that the linear sub- 
space H2(j) of  homogeneous polynomials of  degree 2j is invariant under 
Je=, Jz; moreover, this subspace is orthogonal to any linear subspace of  
homogeneous polynomials of  degree 2j'  ( j  # j ' ) .  In this way it is found that 
H 2 is a separable Hilbert space; H~=~H2(j).  

Remark 3.1. The operators J •  defined in (3.3) differ in the factor 
q(1-c~/4 from the ones usually defined (see, for instance, Ruegg, 1990). The 
reason lies in the fact that I am constructing them as functions of  operators 
satisfying the q-algebra (2.1) realized as in (2.2) with the bracket (2.6). 

Remark 3.2. If instead of  the Casimir operator C defined in (3.3) we 
consider 

C' = (z~O~ + z202)(z,O~ + z202 + 2)/4 (3.7) 

then its eigenvalues are j ( j+ 1) when acting on v~(z~, z2). On taking the 
limit q ~ 1, C'  remains the same for all values of  q and only J •  are deformed 
into the corresponding $U(2)  operators. 

3.2. The Reproducing Kernel and Principal Vectors in H~ 

The explicit expression for the reproducing kernel in H 2 is 

o~ j . 

K(Sl ,  s2; z , ,  z2)= X Z v~ *(s,, s~)v~(z,, z~) 
2 j = 0  ra=--j 

= expq(sl*zl) expq(s*z2) (3.8) 

and for the principal vectors e~,,=2 is 

e~l,~2(zl, z2)= expq(al*zO expq(a2*z2) (3.9) 

It is easy to verify that K(s~, s2; zl, z2) belongs to H~ for each pair 
(sl ,  s2); in fact, the reproducing property implies 

K ( sl , s2 ; zl , z2) 

= ( K ( s l ,  s2; a l ,  a2), K ( a l ,  a2;  2 1 ,  Z 2 ) ) a l , a 2  (3.10) 

so that for zl = s~ and z2 = s2 

]lK(s~, s2; s,, s2)[l 2= K(Sl, s2; s~, s2) 

= eXpq(lSl[ 2 ) expq (Is2[ 2) < oo (3.11) 
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From (3.8) it follows that the restriction of  the reproducing kernel to the 
closed linear subspace corresponding to a fixed value of  j is 

J 
K~J)(sl, s2; zl, z2) = Y oh *(sl, s2)v~(zl, z2) (3.12) 

ttl ~ - j  

at the same time K~J)(sl, s2; zl, z2) is a projection operator onto the subspace 
of  homogeneous polynomials of  order 2j. 

3.3. A Linear Representation of SU(2)q 

To every element g~SU(2)q  is associated a 2 x 2  matrix U with 
coefficients whose properties have to be determined. As in Bargmann (1962), 
a representation is obtained if for every f e  H 2 

(Uf)(6) =f(U'qJ)  (3.13) 

where the superscript in U t denotes the transpose and g~ is the column 
vector with g'l = z~, qJ2 = z2. I f  the matrix elements of U are denoted 
Uu, i, l = 1, 2 (i = row, l = column), then for f ( ~ )  = v~(~b) 

( Uv~)(~b) = M(j, m)( UllZl + U21z2)J+m( U12zl + U22z2) j-m (3.14) 

and from this the matrix elements of the representation D(m, m'; j)(U) are 

D(m, m';j)(U) 

Uv ) 
j-m' j+,,' [ j  + m'] [ [ j  - m '] ! 

=M(j, m')M(j, m) Y~ ~, 
,=o k=o [k]! [ j+m' -k] ! [ t ] t [ j -m ' ] [  

X l ' ~ J - m ' - t  l" lJq 'm'-k[  I" 1" nk,.r -.I.. U21qt z2)J+mlq,= ~ 
.s.,,, 2 ~t.,- 1 ~ t . , , l l V  / t - l ~  

•  U12zl + U22z2)J-mlr (3.15) 

An easy way to prove (3.15) is to use the fact that the inner product 
(2.4) can be computed using a differential instead of the integral form of 
the definition. In fact, the monomials (2.8) are orthonormal under the inner 
product 

(Urn, [ , In )~  U,n( D/ Dz)u.(z)Iz=o (3.16) 

so that the same numerical result is obtained using both versions of the 
inner product [(2.4) and (3.16)]. Computing with (3.16) and using the 
q-version of the Leibnitz rule, 

D Dg(z) 
-~z {f(z)g(z)}={Df(z)/Dz}g(z)+f(qz) Dz (3.17a) 

D" [n]! Dkf(qkz) D"-kg(z) 
Dz"{f(z)g(z)}-  k=o ~" [k]t[n-k]!. Dz k Dzn_ k (3.17b) 
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we easily obtain the result (3.15). It is proved in Section 3.5 that the 
coefficients U~z are not ordinary numbers, because they do not commute; 
this result is obtained as a consistency condition for the coupling of two 
copies of SU(2)q [of course this property of the coefficients is part of the 
current knowledge of SU(2)q]. 

3.4. The Space H~ 

This space is spanned by functions of four complex variables (zi, i = 
1 , . . . , 4 )  in the region defined by Izi[E<[eo]. A basis in this space is 

j l  j2 v,.~(~l)v,.2(~b2), where the ~b, are the vectors defined in the previous section. 
The operators that satisfy the SU(2)q commutation relations are (Ruegg, 
1990) 

Jz=Jlz |174 J•177174174 + (3.18) 
fi where (Jiz, Ji• operate on v,,~($~), t = 1, 2, as indicated in equations (3.4a)- 

(3.4c) and Ii is the identity in the ith space. Another basis in H~ is the set 
of functions ffm($l, $2) such that Jz and J •  act on these as in equations 
(3.4a)-(3.4c); these functions can, of course, be expanded in terms of 

j l  j2 vm~(~b~)VmE(~b2). Both sets of functions are related through the Clebsch- 
Gordan coefficients (CGC). Since explicit expressions for the CGC have 
been published (Groza et al., 1990, and references therein), they will not 
be repeated here; only some of the initial and final steps in the derivation 
are exhibited below to point out where minor differences arise. 

For the derivation I use the method of highest weight, which starts by 
expanding f~(~bl, r as 

j l  j2 
f~(~bl, ~b2)= ~ ~ jl j2 Am~,m2Vm~(~b~)Vm2( O2) (3.19) 

ml=-- j l  m2=--j2 

where j l , j 2  are fixed, I j l - j 2 1  <-j<-jl +j2, and the Aml.m2 are coefficients 
determined by the condition J+f~(~bl, ~b2)=0; this gives a recurrence 
relation whose final result 'is (Biedenharn and Louck, 1981) 

Aml ,m 2 : (__ l )Jl--ml q--(jl--ml)(ml+m2+l)/2 q--(jl--ml)(j2--jl)/2 

x{[jl  + ml]! [ j2+  m2]l/[jl - m l ] !  [ j 2 -  m2]!}~/2A (3.20) 

where A is a constant fixed by the condition (f~,f j)  = 1. Equation (3.20) 
differs from the result of Groza et al. (1990) in the factor q-<j~-m~)(j2-jl)/2, 
which arises in the present case as a consequence of the definition of the 
operators J +  [see equation (3.3)]. This difference modifies also the constant 
A to 

f E ~--(jl--ml)(j+l)~--(jl-ml)(jl--j2) [ j l  + ml]! [ j2+  m2] !~-1/2 A [ ml,ra2 tt tt [ j l -  ml ]! [j2-m2]!J 
ml+m2=j 

(3.21) 
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Remark 3.3. The dosed  expression of  Groza et al. (1990) for A [which 
appears before their equation (39)] seems to be wrong. In fact, if  11 = 12 = 1/2 
and l = 0, the results a r e  A - 2  = 1 + q-l~2 [from their formula after equation 
(38)] and A -2=  q[2] = q(ql/2+ q-1/2) [from their formula before equation 
(39)], which are obviously different. Of course, to compute [2] I used their 
expression [n] = ( q n / 2  _ q-n/2)/(ql/2q-1/2) for the basic bracket. Their result 
after equation (38) is correct and leads to the known value when q ~ 1. In 
any case, I cannot present a closed expression for A. 

The other members of  the multiplet ( f ~ ( ~ l ,  ~2)) are given as 

f~(~b 1, ~2) = q-(l-2j)(j-.,)/4{[j + m] !/[2j] [ [ j  - m] l} 1/2 

x ( J - y - m f j ( 0 1 ,  g,2) (3,22) 

where the factor q-(1-2j)o-,.)/4 comes from the definition of  J +  [equation 
(3.3)]. The CGC are 

C(ml ,  m2; j )  - t , j1 , , j 2  4"J "~ - -  k t, m l  V m 2 ,  J m !  

= q-(1-2j)(j-m)/4{[j + m] !/[2j]l  [ j -  m] l} i/= 

X ~.  j - - m  j l  j 2  j l  j 2  Arp((J+) Vm~Vm2, Vr Vp ) (3.23) 
r,p 

r+p = j  

whose explicit expression is 

C(m 1, m2; j )  = q-O-j2)o-,.)/2{[j + m] !/[2j]! [ j  - m] !}t/2 

j - - m  

x Y F ( j -  m, k ; j l ,  m l ; j 2 ,  m 2 ) A m l + k ,  m2+j_m_ k 
k = O  

(3.24) 

where 

F ( j -  m, k ; j l ,  m l ; j 2 ,  m2) 

= q k ( j + j 2 - - j l - k ) / 2 [ j  _ m] ! / [k]  ! [ j  - m - k]! 

x{ [ j l  - m 1]! [ j l +  m 1 + k]! [ j 2 -  m2] ! [ j2 + m2 + j -  m - k] !}1/2 

x{ [ j l  + m 1]! [ j l  - m I - k]! [j2 + m2][ [ j 2 '  m 2 - j  + m - k]!}-1/2 
(3,24a) 

3.5. The Representation D(m, m'; 1/2) 

The representation matrices D(m, m'; j ) (U) were introduced in Section 
3.3. In this section the conditions satisfied by the matrix elements of  the 
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representation with j = 1/2 are obtained. The starting point is the construc- 
tion of an invariant, namely, a function h(qH, ~b2) such that ( Uh)(~Ol, ~02) = 
h(~Ol, ~2); the explicit expression for h(q~l, qJ2) is 

J 
h(qrl, 4,2) = Y. C(rn,-rn; 0)v~(~01)v~,,(qJ2) (3.25) 

rn = -- j  

and from (3.12) 

J 
(Uh)(O1, ~2) = E 

m , m ' , m " = - - j  

#. �9 C(m, -m; O)D(m, m ,j)D(-m, m",j) 

(3.26) • v~,(q,1)v~,,(r 

Equating (3.25) and (3.26) gives 

J 
E C(m,-m;O)D(m, ml;j)D(-m, m2;j)  

m =-- j  

= C ( m l ,  rn2; 0)6,,1.-,,2 (3.27) 

which is a relation involving the D(m, m';j); it will be used to obtain the 
conditions satisfied by the matrix elements of the fundamental representa- 
tion D(m, m'; 1/2). 

Incidentally, (3.25) can be used to obtain a recurrence relations for the 
CGC; this is done by noting that J +  h = 0. Thus, for j = 1/2 it implies 

C ( + - ;  0) = -q'/ZC(-+; 0) (3.28) 

If in (3.27) j = 1/2, then four equations are obtained which, after use of 
(3.28), reduce to 

D(- -F ;  1/2)D(.F.F; 1 /2 )=  ql/2D('F'F; 1/2)O(--I- ;  1/2) (3.29a) 

D ( - - ;  1 / 2 ) D ( + - ;  1/2)= q~/2D(+-; 1 / 2 ) D ( - - ;  1/2) (3.29b) 

D ( - - ;  1/2)D(++;  1/2)-q~/2D(+-; 1 /2 )D( -+ ;  1/2)= 1 (3.29c) 

D ( - + ;  1 /2 )O(+- ;  1 /2 ) -q l /2D(++;  1 / 2 ) D ( - - ;  1/2)= _ql/2 (3.29d) 

Notice that (3.29c) is the so-called quantum determinant condition. 
Now couple j l  = j2  = 1/2 to j = 1; then 

/ .)11(~/1, 1~2) = 1 /2  1 /2  vl/2(~bl)vl/2(~b2) (3.30a) 

v~(~01, q,2)= c ( + - ;  1/2 1/2 1)Vll2( li)V-ll2(IP2) 
+ C ( - ' F ;  1/2 l/2 1)vllz( tO1)V-,lZ( d/2) (3.30b) 

, v-l/2(q,l)v-1/2(~Oz) (3.30c) 
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If J+  acts o n  Vol(~l/1, 02)  the result is 

(Y+)v~(4Jl, 02) = q-l/41211/2v~(qtl, 02) 

= { q - 1 / 4 C ( + - ;  1) + q l / 4 C ( - + ;  1)} 

1/2 1/2 X V !/2( 4'1 ) V a/2(q'2) 

which implies 

(3.31) 

1 1/2 
,. 1/2 1/2 = Y~ D(1, rn;1) E C(m',m-m,1)Vr.,(q, Ov,._,.,(r 

m=--I m'=--1/2 

1/2 
tt. 1/2 1/2 Y. D(+,  m'; 1/2)D(+, m , 1/2)Vm, (~J1)~)m,, (02) 

1 

E 
rn=--l 

D(1, m; 1)v~(~bl, q'2) 

x (3.34) 
m',m"=--l/2 

from which the following four equations are obtained: 

D(1 , -1 ;  1)= D ( + - ;  1 /2 )D(+- ;  1/2) (3.35a) 

D(1, 1; 1) = D(++; 1/2)D(++; 1/2) (3.35b) 

D(1, 0; 1 )C( -+ ;  1)= D ( + - ;  1/2)D(++;  1/2) (3.35c) 

D(1, 0; 1 )C(+ - ;  1)= D(++;  1 /2 )D(+- ;  1/2) (3.35d) 

From (3.35c) and (3.35d) it follows that [using (3.33)] 

D(++;  1 /2 )D(+- ;  1/2) = q-1/2D(+-; 1/2)D(++;  1/2) (3.36) 

This relation ensures that equations (3.35c) and (3.35d) are simultaneously 
satisfied; it is in this sense a consistency condition. Proceeding in a similar 
way with Vo~(qtl, q~2), two equations involving D(0, 0; 1) are obtained; from 
these it follows that 

D ( + - ;  1 /2 )D( -+ ;  1/2)= D ( - + ;  1 /2 )D(+- ;  1/2) (3.37) 

and finally, from vll(~Ol, 02), 

D ( - - ;  1 /2 )D( -+ ;  1/2)= ql/2D(-+; 1 / 2 ) D ( - - ;  1/2) (3.38) 

q-a/4C(+-; 1)+ ql/4C(-+; 1)= q-i/41211/2 (3.32) 

The normalization of Vo~(qJl, 02) gives a second equation to determine the 
two CGC involved; the result is 

C ( + - ;  1) = (l+q)-~/2; C ( - + ;  1)=q~/2(l+q) -'/2 (3.33) 

Acting on v~(qq, ~b2) with an element U ~ SU(2)q gives the following 
relation: 
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Summarizing: Equations (3.29a)-(3.29d) and (3.36)-(3.38) are the seven 
basic relations satisfied by the matrix elements of D(m, m'; 1/2)(U). 

Since for the fundamental representation qD(1/2)(U)= U and the 
conditions satisfied by the matrix elements are now known, they can be 
used in (3.15) to compute D(m, m';j)(U). The result is 

D(m, m'; j )(U) 

j--re' j + m '  j+ra j--ra 

= M ( j , m ' ) M ( j , m )  ~ E Y 
t=O k=O r=O p-O 

[j  + m']! [ j - m ' ] !  [ j +  m]! [ j -m]!  
• 

[ k ] ! [ j + m ' - k ] [ [ t ] ! [ j - m ' - t ] [ [ r ] ! [ p ] !  [ j + m - r ] ! [ j - m - p ] [  

k ( j+m--r )  j + m - - r l l r  i T j - m - - p  xq Ull "~21 ~'12 U~2 

j + m ' - - k - I  j - m ' - t - - I  
x i-[ [J + m - r - r'] I-I [r - -  r n ] z t ~ - m ' - r + k z ~ - J + m ' + t l z l = z 2 =  0 

r '=0  r"=0 

k - i  t--1 

x 1-I [ j - m - p - s ' ]  1-'[ [P-s"]~-m-P-kz~-'lz,=z2=o (3.39) 
S'=0 S"~0 

4. A HILBERT SPACE RELATED TO H~ 

In this section, I tackle the following question: Is there a Hilbert space 
F of complex functions of a real variable x unitarily related to Hq ? The 
space F plays the role of the Hilbert space of ordinary quantum mechanics. 
To establish the correspondence, it is necessary to define the inner product 
of F in such a way that for a pair of functions d,(x), O(x) ~ F and a pair 
of operators O, O f 

(O~b, O)F = (~b, O*~b)~: (4.1) 

where ( . , . ) r  is the inner product in F and OOt-qO*O = I. The first step 
is, therefore, to determine O and O f that satisfy the q-algebra, and next to 
establish the way in which a function in Hq is related to a function in F 
and finally to require that 

(Df /  Dz, g) = ( O~b, ~b)F = (f, zg) = (dp, O* O)F (4.2) 

The operators O, O ~ act on functions in F as follows: 

O~(x ) -  D6(x)/Dx, O*~(x)-  x~(x) (4.3) 

and the inner product that satisfies (4.1) is 

( d~, ~ )F =- 4)( D/ Dx)O(x)lx = 0 (4.4) 
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Remark 4.1. It is easy to check that no inner product of the form 
(q~, tl,)'F = S~_~ p(x)cb*(x)qJ(x) Dx satisfying (4.1) and the q-algebra exists; 
in fact, from (4.1) 

(D~/Dx, q,)'~=f~oop(x)D4,*(x)/Dxq,(x)Dx 

= (~b, xO)'F = f~o~ p(x)~b*(x)x~b(x) Dx (4.5) 

so that the equation satisfied by p(x) is [recall the q-Leibnitz rule (3.17a), 
(3.17b)] 

f ~o qb *( x){xp(x) + Dp(x/ q)/ Dx}~b(x) Dx 

= f~oo qb*(qx)p(x) D~(x)/Dx Dx (4.6) 

and to obtain (4.6) it has been assumed that qb*(x)p(x)O(x)~ 0 as Ixl-, ~.  
The equation that determines p(x) should not depend on the functions 
~b(x) and /or  qJ(x) and this condition cannot be satisfied in (4.6). 

The monomials xm/([m] !)1/2 are orthonormal under the inner product 
(4.4); therefore the Hilbert space F is the set of  all functions O(x) which 
can be expanded in a Taylor series 

tp(x)= ~ amXm/([m]!) 1/2 (4.7) 
m = O  

2 such that ~ , , :0  lal <oo. The inner product of ~b(x) and ~(x) is then 

(~, ~b)F = ~ or*/3,, (4.8) 
m = 0  

With this result it is an easy matter to construct the operator that relates a 
function O(x)E F to a function f(z)~ Hq. Denoting it as A(z, x), its 
expression is 

A(z,x) = ~ z*mxm/[m]! (4.9) 
m = 0  

and the relation is  as follows: 

f(z) = (A(z, x), O(X))x, O(x) = (A(z*, x),f(z))p,~ (4.10) 

As a result, both functions f(z) ~ Hq and qJ(x) ~ F are characterized 
by the same set of coefficients in the series expansions and therefore the 
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correspondence is one-to-one. It also follows that under the correspondence 
A(z, x): ~b->f 

( f , f )  = (t#, 0)F (4.11) 

The final result of the above discussion is that both Hilbert spaces (F  and 
Hq) are unitarily related. 

To close this section, I prove that under the inner product (4.4) the 
operators introduced in (4.3) are Hermitian conjugates of one another. 
In fact, consider two functions O(x)=~,oz,,,xm/([m]!) 1/2 and ~b(x)= 

fl,,x"/([n] !)1/2; then 

o o  

(D~b/Dx,  q~)F= E [ n + l ] ! a * + l f l , , = ( t p ,  xqb)F (4.12) 
n = l  

which proves the assertion. 

5. SUMMARY AND RESULTS 

In this paper I have constructed a Hilbert space (HE) of analytic 
functions that resembles as closely as possible Bargmann's (1961, 1962) 
construction for the rotation group. The CGC have been computed and 
some minor differences with existing results pointed out; all these differences 
are due to the way in which the space Hq was defined; as a by-product of 
the study of H 4 the noncommutative properties of the matrix elements of 
a linear representation of SU(2)q were obtained as consistency conditions 
when coupling j l  = j 2 =  1/2 to j = 0 ,  1; with this result at hand, explicit 
expressions for the matrices of the irreducible representation of order (2j + 1) 
were exhibited. As a final result, the relation of Hq to the Hilbert space F 
of complex functions of a real variable was established; the inner product 
in F is not the product in the ordinary Hilbert space of quantum mechanics. 
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